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ABSTRACT
The present work is devoted to the derivation of fundamental equations in
generalized thermoelastic diffusion with four lags and higher-order
time-fractional derivatives. The equations of the heat conduction and the
mass diffusion have been modified by using Taylor’s series of time-frac-
tional order. In this new model, the Fourier and the Fick laws have been
modified to include a higher time-fractional order of the heat conduction
vector, the gradient of temperature, the diffusing mass flux and the
gradient of chemical potential. We adopted the definitions of Caputo and
Jumarie; for time-fractional derivatives. The work of Nowacki; Sherief,
Hamza, and Saleh; and Aouadi; are deduced as limit cases from the current
investigation. Applying this formulation, we have discussed a thermoelastic-
diffusion problem for a half-space exposed to thermal and chemical shock
with a permeable material in contact with the half-surface. We discussed
the sensitivity of the different physical parameters in all studied fields in
detail and the results are presented graphically as well as in tabular forms.
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1. Introduction

In recent years, the subject fractional calculus has been applied in an increasing number of fields,
such as control engineering, electromagnetism, chemistry, signal processing, quantum mechanics,
astrophysics, quantum field theory and nuclear physics, etc. The models of abnormal transport
processes in the form of space and/or time-fractional convection-diffusion equation have been of
great interest and have been studied by several researchers. Moreover, global dependency and
non-local property of the fractional derivative is one of the main reasons for its increasing
popularity. The concept of non-locality using the fractional differential operator in thermoelastic
models opens up a new perspective on the study of thermoelastic deformations in solid mechan-
ics. In addition, nonstandard constructions are necessary for continuous improvement in the
progress of new materials.

The concepts of fractional calculus have been generalized in several approaches and some
alternative definitions of fractional derivatives have been clarified in Podlubny (1999), Oldham
and Spanier (1974), Miller and Ross (1993), Herrmann (2011), and Hilfer (2000). Caputo (1967)
and Caputo and Mainardi (1971a, 1971b) have used the derivatives with fractional order to
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describe viscoelastic materials, and they successfully established the relationship between the lin-
ear viscoelasticity theory and fractional-order derivatives. They also attained an agreement with
the experimental results successfully. Some applications of fractional calculus are analyzed for dif-
ferent problems of solid mechanics in Mainardi’s book (Mainardi 1998).

The classical thermoelasticity theory containing an infinite speed of heat propagation contra-
dicts physical realities. Over the last four decades, non-classical theories have been developed that
include a limited speed of heat transfer in thermoelastic solids to remove this absurdity. The gen-
eralized thermoelasticity theory with relaxation time was first introduced by Lord and Shulman
(1967), who attained a heat equation by proposing a new heat-conduction law instead of classical
Fourier’s law. One can refer to Hetnarski and Ignaczak (1999), to review and present the general-
ized theories of thermoelasticity.

We can define Diffusion as a random walk of assemblies of molecules from a high concentra-
tion region to a low concentration region. At present, there is great interest in studying this phe-
nomenon due to its application in the electronics industry and geophysics. In the synthesis of the
integrated circuit fabrication, we diffusion to introduce dopants in controlled quantities in the
semiconductor material.

In fact, the improvement of advanced technologies in the years before, during, and after
World War II has clearly affected investigations in which the fields of diffusion and temperature
in solid materials cannot be ignored. In low and high temperatures, the heat and mass transfer
processes play a critical role in many satellite problems, returning spacecraft, and landing on
water or land. Nowadays, oil corporations are concerned with the thermo-diffusion process to
extract oil more efficiently than oil deposits. Thermo-diffusion has many industrial applications
like the optimal extraction of the oil from hydrocarbon reservoirs, fabrication of semiconductor
devices in mixtures metal and molten semiconductor, separation of types like polymers and the
manipulation of the macro-molecules like DNA, etc.

Nowacki (1974a, 1974b) developed the classical thermoelastic diffusion theory based on
coupled thermoelastic theory. Olesiak and Pyryev (1995) investigated the coupled quasi-stationary
thermo-diffusion problem of the elastic cylinder. The generalized theory of thermoelastic diffu-
sion with a relaxation time has been established by Sherief, Hamza, and Saleh (2004), which
allows finite speeds of the propagation of thermal waves. Also, they have demonstrated the theo-
rems of reciprocity and uniqueness for the generalized equations of the thermo-diffusion prob-
lem, in an isotropic media. Based on this theory, Sherief and Saleh (2005) studied the problem of
thermo-diffusion half-space.

Aouadi (2007) proved the theory of thermo-diffusion in the Laplace transformation, assuming
that the field variables are continuous and that Laplace’s inversion to each function is unique.
Aouadi (2008) obtained the theories of reciprocity and uniqueness for the generalized thermo-dif-
fusion problem in the anisotropic materials, with the restriction that the thermal conductivity,
diffusion and elastic tensors were positive definite. More recently, the influences of thermodiffu-
sionin anisotropic devices have been considered by many investigations (Abbas 2015; Deswal,
Kalkal, and Sheoran 2016; Mishra, Sharma, and Sharma 2017; Othman and Eraki 2017; Xiong
and Niu 2017; Biswas, Mukhopadhyay, and Shaw 2019; Davydov, Zemskov, and Akhmetova
2019; Mondal, Sur, and Kanoria 2019; Mondal and Kanoria 2019).

Recently increased attention has been devoted to the time differential dual-phase-lag model for
the heat conduction: this model relies on good approximation, obtained appropriate expansions
of the Taylor series, of the heat equation proposed by Tzou (2015); theory (DPL). As defined in
the case of the dual-phase-lag model suggested by Tzou (1995a); the possibility of taking into
account higher-order effects in the phase-lags can open very interesting prospects about specific
heat transport problems, including the lagging behavior in biological systems. The main impetus
in this study is that the interaction among multiple energy carriers progressively gains importance
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as the observation scales reduce and have, as a direct result, including high-order terms in the
time differential dual-phase-lag heat conduction equation.

In particular, regardless of the number of energy carriers involved, for such biological systems,
the ultrafast transient remains governed by the dual-phase-lags but, in parallel, a suitable exten-
sion of the original constitutive law toward high-order effects seems to be required: in fact,
energy exchanges among the carriers in living tissues will raise the orders of the lagging behavior,
adding even more high-order terms in the dual phase-lag heat equation.

Recently, some efforts have been done to change the classical Fourier law of heat conduction
by using time- derivative of higher-order in Abouelregal (2019a, 2019b, 2020). In this work, a
new generalized thermo-diffusion model with four-phase-lags and higher-order fractional time-
derivatives using the approach of fractional calculus has been constructed to describe diffusion
and heat conduction in a deformable body. The set of equations that describe solid material
deformation when under the simultaneous effect of mechanical fields, temperature and concentra-
tion, as well as to introduce a generalized law of the heat and the mass flow are improved. In this
model, Fourier’s and the Fick’s laws were modified to include fractional-order time-derivative of
a higher order of the heat flux, the gradient of temperature, the flux of the diffusing mass and
the gradient of chemical potential. Special cases of interest are obtained from the current analysis.

In this work a four-phase-lag model is proposed is proposed to incorporate the effect of micro-
structural interactions on the rapid thermal and diffusion transfer process. In numerical application,
the thermo-diffusion response of a half-space medium exposed to a thermal and chemical potential
shock is studied. The numerical results temperature, chemical potential, thermal stress and displace-
ment, are obtained. The effects of some physical parameters on the system response are investigated
and analyzed. It can be seen that the fractional and the higher orders of the fractional derivative
model have significant effects on the dynamic responses of the system. It can be seen that the higher-
order of the fractional derivative model has significant effect on the dynamic responses of the system.

2. Fractional thermodiffusive model with four-phase-lags

The governing equations for a homogeneous isotropic generalized thermodiffusive solid in the absence
of body forces are, as follows (Nowacki 1974a; Sherief, Hamza, and Saleh 2004; Aouadi 2007):

The constitutive equations

rij ¼ 2leij þ dij keij � b1h� b2C
� �

(1)
The strain-displacement relations

2eij ¼ uj, i þ ui, j (2)

The energy balance equation

qCe
@h
@t

þ b1T0
@

@t
div uð Þ þ aT0

@C
@t

¼ �div qþ Q, (3)

The equation of mass conservation

div g ¼ � @C
@t

, (4)

The chemical potential

P ¼ �b2ekk þ bC � ah (5)

The classical Fourier’s law

q x, tð Þ ¼ �Krh x, tð Þ, (6)

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 3



The flow of the diffusion molar mass vector

g x, tð Þ ¼ �DrP x, tð Þ, (7)

Extending the thermoelastic model introduced by Sherief, Hamza, and Saleh (2004), we proposed
a modified four-phase-lag thermodiffusive model. In this model, the generalized constitutive
equation for heat conduction and diffusion are proposed to describe the lagging behavior are of
the form:

q x, t þ sqð Þ ¼ �Krh x, t þ shð Þ, (8)

g x, t þ sgð Þ ¼ �DrP x, t þ spð Þ, (9)

Applying Taylor’s series of time-fractional order developed in Jumarie (2010), for any positive
integer k and any fractional-order a (0 < a � 1) to expand all the functions given in (8) and (9)
and keeping the terms up to specific orders in sq, sh, sg and sp in order to achieve a comparable
accuracy

q x, t þ sqð Þ ¼ 1þPl
k¼1

sqð Þka
C 1þ kað Þ

@ka

@tka

 !
q x, tð Þ

rh x, t þ shð Þ ¼ 1þPm
k¼1

shð Þka
C 1þ kað Þ

@ka

@tka

 !
rh x, tð Þ,

(10)

g x, t þ sgð Þ ¼ 1þPn
k¼1

sgð Þka
C 1þ kað Þ

@ka

@tka

 !
g x, tð Þ,

rP x, t þ spð Þ ¼ 1þPh
k¼1

spð Þka
C 1þ kað Þ

@ka

@tka

 !
rP x, tð Þ,

(11)

where @ka

@tka ðf Þ is the time derivative of order ka of any function f ðtÞ and C 1þ kað Þ ¼ kað Þ!: We
have expanded until the order la the heat flux, to the order ma the temperature gradient, to the
order na diffusing mass and to the order ha chemical potential. In the above equation, we have
taken into account the Riemann-Liouville fractional integral, which is introduced as a natural
generalization of the convolution type integral (Caputo and Mainardi 1971a; Miller and Ross
1993; Podlubny 1999)

@a

@ta
f tð Þ ¼ Iaf tð Þ ¼

ðt
0

t � sð Þa�1

C a� 1ð Þ f sð Þds (12)

where Ia is the Riemann–Liouville fractional integral operator of order a, f tð Þ is a Lebesgue inte-
grable function and t is the time. In the case that f tð Þ is absolutely continuous, then

lim
a!1

da

dta
f tð Þ

� �
¼ f ' tð Þ (13)

The integrated differential operator in (12) is of a Caputo-type (Caputo 1974). It has a memory
fading due to the convolution with t�a: Here, if the parametera ¼ 1 we say that the system has a
perfect memory and if a ¼ 0 there is no memory (Baker, Eldred, and Palazotto 1996). For any
value the parameter a, ð0 < a � 1Þ the system has partial memory. Substituting from Eqs. (10)
and (11) into Eqs. (6) and (7), we get the fractional-Fourier heat conduction and fractional-
Fickian diffusion as
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1þ
Xl

k¼1

sqð Þka
C 1þ kað Þ

@ka

@tka

 !
q x, tð Þ ¼ �K 1þ

Xm

k¼1

shð Þka
C 1þ kað Þ

@ka

@tka

 !
rh x, tð Þ (14)

1þ
Xn

k¼1

sgð Þka
C 1þ kað Þ

@ka

@tka

 !
g x, tð Þ ¼ �D 1þ

Xh

k¼1

spð Þka
C 1þ kað Þ

@ka

@tka

 !
rP x, tð Þ (15)

On taking the divergence of Eq. (14) and using Eq. (3), we get

1þ
Xl

k¼1

sqð Þka
C 1þ kað Þ

@ka

@tka

 !
qCe

@h
@t

þ b1T0
@

@t
divuð Þ þ aT0

@C
@t

� Q

� �

¼ K 1þ
Xm

k¼1

shð Þka
C 1þ kað Þ

@ka

@tka

 !
r2h

(16)

In a similar way, taking the divergence of Eq. (15) and using Eqs. (4) and (5), we obtain

@

@t
1þ

Xn

k¼1

sgð Þka
C 1þ kað Þ

@ka

@tka

 !
C ¼ D 1þ

Xh

k¼1

spð Þka
C 1þ kað Þ

@ka

@tka

 !
r2P x, tð Þ (17)

Substituting from Eq. (17) in Eq. (5), we arrive at

1þ
Xh

k¼1

spð Þka
C 1þ kað Þ

@ka

@tka

 !
Db r2C � Db2r2ekk � Da r2h
� 	

¼ @

@t
1þ

Xn

k¼1

sgð Þka
C 1þ kað Þ

@ka

@tka

 !
C

(18)

The equations of the generalized thermo-diffusion comprise the constitutive equations (1) and (5), the
heat conduction equation (17), the mass diffusion equation (18) and the following motion equation:

lui, jj þ kþ lð Þuj, ij � b1h, i � b2C, i þ Fi ¼ q€ui (19)

3. Special cases of thermoelasticity and thermo-diffusion theories

In the context of the generalized thermoelastic-diffusion model with four-phase-lag and higher-
order time-derivatives (GHTD), we can deduce several special cases. The obtained results are
valid for some special cases which can be deduced from our generalized model.

� First, neglecting the effects of diffusion ða ¼ b ¼ D ¼ b2 ¼ 0Þ and without fractional-order
time derivatives ða ¼ 1Þ, we get:
i. the classical thermoelasticity theory (CTE) (Biot 1956) when sq ¼ sh ¼ 0 and the heat con-
duction equation associated with this theory will be in the form

Kr2h ¼ qCe
@h
@t

þ cT0
@e
@t

� Q (20)

ii. Lord-Shulman theory of thermoelasticity (LS) (Lord and Shulman 1967) when sq ¼ s0 >
0, sh ! 0, and l ¼ 1: The heat conduction equation, in this case, takes the form

Kr2h ¼ 1þ s0
@

@t

� �
qCe

@h
@t

þ cT0
@e
@t

� Q

� �
(21)

iii. the generalized heat conduction equation of Tzou theory (DPL) (Tzou 1995b) from (11)
when l ¼ 1, m ¼ 1

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 5



K 1þ sh
@

@t

� �
r2h ¼ 1þ sq

@

@t
þ s2q

2
@2

@t2

� �
qCe

@h
@t

þ cT0
@e
@t

� Q

� �
(22)

iv. the heat equation agrees with Chandrasekharaiah (1998); (CT) when l ¼ 1 and m ¼ 1

K 1þ sh
@

@t

� �
r2h ¼ 1þ sq

@

@t

� �
qCe

@h
@t

þ cT0
@e
@t

� Q

� �
(23)

v. the generalized theory with two-phase-lags of high-order time derivatives (HDPL) by taking
sq, sh > 0, l > 2, m > 1:

� Second, in case of the thermo-diffusion interactions is taken into account and neglecting the
fractional-order time-derivatives ða ¼ 1Þ, we obtain:

i- the classical theory of thermodiffusion developed by Nowacki (1974a, 1974b) (CTD), when
a, b,D, b2 > 0 and the phase-lags vanish i.e. sq ¼ sh ¼ sg ¼ sp ¼ 0: The basic equations
will be in the forms

qCe
@h
@t

þ b1T0
@

@t
div uð Þ þ aT0

@C
@t

� Q ¼ Kr2h (24)

@C
@t

¼ Db r2C � Db2r2ekk � Da r2h (25)

ii- the generalized theory of thermo-diffusion introduced by Sherief, Hamza, and Saleh (2004);
(STD) by putting l ¼ 1, k ¼ 1 and sh ¼ sp ¼ 0: The the heat conduction and the mass dif-
fusion equations are given by:

1þ sq
@

@t

� �
qCe

@h
@t

þ b1T0
@

@t
div uð Þ þ aT0

@C
@t

� Q

� �
¼ Kr2h (26)

1þ sg
@

@t

� �
@C
@t

¼ Db r2C � Db2r2ekk � Da r2h (27)

iii- the generalized thermo-diffusion theory with four-phase-lags of high-order time derivatives
(HTPL) by takingsq, sh, sg, sp > 0, l,m, n, h � 1:

� Third, taken into account the thermo-diffusion interactions and fractional order time deriva-
tives (0 < a � 1), we obtain:

i. The fractional thermo-diffusion theory introduced by Ezzat and Fayik (2011); (FTD) by put-
ting l ¼ 2, m ¼ n ¼ p ¼ 1, and sp ¼ 0: The the heat conduction and the mass diffusion
equations are given by:

1þ saq
a!

@a

@ta
þ s2aq
ð2aÞ!

@2a

@t2a

 !
qCe

@h
@t

þ b1T0
@

@t
div uð Þ þ aT0

@C
@t

� Q

� �
¼ K 1þ sah

a!
@a

@ta

� �
r2h

(28)

1þ sag
a!

@a

@ta

� �
@C
@t

¼ Db r2C � Db2r2ekk � Da r2h (29)

ii The generalized fractional thermo-diffusion model with four-phase-lags of high-order time
derivatives (HFTD) by taking sq, sh, sg, sp > 0, l,m, n, h � 1:

4. Application of the modified thermo-diffusion model

In this section, the problem of an isotropic thermoelastic half-space (x � 0), based on the gener-
alized fractional thermo-diffusion model with four-phase-lags and high-order time derivatives
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(HFTD), has been studied. The plane x ¼ 0 of the half-space is free of traction and is exposed to
a thermal shock. Chemical potential is also assumed to be a known function of time on the same
plane. It is assumed that all studied functions are bounded and vanish as x ! 1: It follows from
the description of the problem that all considered functions will depend on x and t only. We
thus, obtain the displacement components of the form,

ux ¼ u x, tð Þ, uy ¼ uz ¼ 0 (30)

The strain component is given by

exx ¼ e ¼ @u
@x

(31)

From Eqs. (1) and (5), we get

rxx ¼ kþ 2lð Þ @u
@x

� b1h� b2C

ryy ¼ k
@u
@x

� b1h� b2C
(32)

P ¼ �b2
@u
@x

þ bC � ah (33)

Equations (16), (18), and (19), are reduce to

kþ lð Þ @e
@x

þ l
@2u
@x2

� b1
@h
@x

� b2
@C
@x

¼ q
@2u
@t2

(34)

1þ
Xl

k¼1

sqð Þka
C 1þ kað Þ

@ka

@tka

 !
qCe

@h
@t

þ b1T0
@

@t
div uð Þ þ aT0

@C
@t

� Q

� �

¼ K 1þ
Xm

k¼1

shð Þka
C 1þ kað Þ

@ka

@tka

 !
@2h
@x2

(35)

1þ
Xh

k¼1

spð Þka
C 1þ kað Þ

@ka

@tka

 !
Db

@2C
@x2

� Db2r2 @
2e

@x2
� Da

@2h
@x2

� �

¼ @

@t
1þ

Xn

k¼1

sgð Þka
C 1þ kað Þ

@ka

@tka

 !
C

(36)

To solve the problem, we will use the following dimensionless variables:

x0, u0f g ¼ c0g x, uf g, t0, s0q, s0h, s0g, s0#

 � ¼ c20g t, sq, sh, sg, s#f g, P0 ¼ P

K
,

h ¼ b1h
kþ 2lð Þ ,C

0 ¼ b2C
kþ 2lð Þ , r0ij ¼

rij,
kþ 2lð Þ , g ¼ qCE

K
, c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

q

s (37)

In view of Eq. (37), the non-dimensional form of Eqs. (32)–(36) reduce to

@2u
@x2

� @h
@x

� @C
@x

¼ @2u
@t2

(38)

1þ
Xl

k¼1

sqð Þka
C 1þ kað Þ

@ka

@tka

 !
@h
@t

þ e
@e
@t

þ a1e
@C
@t

� �
¼ 1þ

Xm

k¼1

shð Þka
C 1þ kað Þ

@ka

@tka

 !
@2h
@x2

(39)
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1þ
Xh

k¼1

spð Þka
C 1þ kað Þ

@ka

@tka

 !
a3

@2C
@x2

� @2e
@x2

� a1
@2h
@x2

� �
¼ a2

@

@t
1þ

Xn
k¼1

sgð Þka
C 1þ kað Þ

@ka

@tka

 !
C

(40)

rxx ¼ e� h� C

ryy ¼ 1� 2=b2
� 	

e� h� C
(41)

P ¼ a3C � e� a1h (42)

where

e ¼ T0b
2
1

qCe kþ 2lð Þ , a1 ¼ a kþ 2lð Þ
b1b2

, a2 ¼ kþ 2lð Þ
gDb22

, a3 ¼ b kþ 2lð Þ
b22

, b2 ¼ kþ 2l
l

: (43)

5. Initial and boundary conditions

The initial conditions are

u x, 0ð Þ ¼ @ku x, 0ð Þ
@tk

¼ 0, h x, 0ð Þ ¼ @kh x, 0ð Þ
@tk

¼ 0,P x, 0ð Þ ¼ @kP x, 0ð Þ
@tk

¼ 0,

C x, 0ð Þ ¼ @kC x, 0ð Þ
@tk

¼ 0, k ¼ 1, 2, 3, :::, l � 1,m� 1, h� 1, n� 1ð Þ
(44)

The homogeneous initial conditions are supplemented by the following boundary conditions:

rxx x, 0ð Þ ¼ 0, h x, hð Þ ¼ h1H tð Þ,P x, hð Þ ¼ P1H tð Þ (45)

where h1 and P1 are constants.

6. The solution in the transformed domain

Using Laplace transform technique, Eqs. (38)–(42) can be transformed into the form

d2u
dx2

� s2u ¼ dh
dx

þ dC
dx

(46)

s 1þ
Xl

k¼1

sqð Þka
C 1þ kað Þ s

ka

 !
h þ ee þ a1eC
� �

¼ 1þ
Xm

k¼1

shð Þka
C 1þ kað Þ s

ka

 !
d2h
dx2

(47)

1þ
Xh

k¼1

spð Þka
C 1þ kað Þ s

ka

 !
a3

d2C
dx2

� d2e
dx2

� a1
d2h
dx2

� �
¼ sa2 1þ

Xn

k¼1

sgð Þka
C 1þ kað Þ s

ka

 !
C (48)

rxx ¼ e � h � C

ryy ¼ 1� 2=b2
� 	

e � h � C
(49)

P ¼ a3C � e � a1h (50)

Eliminating e and C among Eqs. (46)–(48), we obtain

d2

dx2
�m2

1

� �
d2

dx2
�m2

2

� �
d2

dx2
�m2

3

� �
h ¼ 0 (51)

where m2
1,m

2
2 and m2

3 are the roots of the characteristic equation
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m6 � a1m
4 þ a2m

2 � a3 ¼ 0 (52)

where

a1 ¼ s
a3 � 1

a4a1e a1 þ 2ð Þ þ a4a3 1þ eð Þ � a4 þ a2a5 þ a3s
� �

,

a2 ¼ s2

a3 � 1
a4esa

2
1 þ a4a3sþ a4a5a2 1þ eð Þ þ a2sa5

� �
,

a2 ¼ s4a4a5a2
a3 � 1

, a4 ¼
1þ

Xl

k¼1

sqð Þka
C 1þ kað Þ s

ka

1þ
Xm

k¼1

shð Þka
C 1þ kað Þ s

ka

, a5 ¼
1þ

Xn

k¼1

sgð Þka
C 1þ kað Þ s

ka

1þ
Xh

k¼1

spð Þka
C 1þ kað Þ s

ka

:

(53)

In a similar manner we can show that e and C satisfy the equations

d2

dx2
�m2

1

� �
d2

dx2
�m2

2

� �
d2

dx2
�m2

3

� �
e,Cf g ¼ 0 (54)

The solution of Eqs. (51) and (54) has the form,

h ¼
X3

n¼1
Ane

�mnx (55)

e ¼
X3

n¼1
A0
ne

�mnx (56)

C ¼
X3

n¼1
A00
ne

�mnx (57)

where An, A0
n, and A00

n are parameters depending only on the parameters:Substituting from Eqs.
(55)–(57) into Eqs. (46)–(48), we get

A0
n ¼

m2
n m2

n � sa4 1� a1eð Þ� �
sa4e m2

n 1þ a1ð Þ � a1s2
� �An ¼ XnAn

A00
n ¼

m4
n �m2

n s2 þ sa4 1þ eð Þ� �þ a4s4

sa4e m2
n 1þ a1ð Þ � a1s2

� � An ¼ CnAn

(58)

We thus have

e ¼
X3

n¼1
XnAne

�mnx (59)

C ¼
X3

n¼1
CnAne

�mnx (60)

Integrating both sides of Eq. (31), we obtain upon using the relation, Eq. (55),

u ¼ �
X3

n¼1

Xn

mn
Ane

�mnx (61)

Substituting from Eqs. (55, 60), and (61) into Eqs. (49) and (50), we get

rxx ¼
X3

n¼1
Xn � Cn � 1ð ÞAne

�mnx (62)

P ¼
X3

n¼1
a3Cn � Xn � a1ð ÞAne

�mnx (63)

In order to evaluate the unknown parameters An, ðn ¼ 1, 2, 3Þ, we will use the Laplace transform
of the boundary conditions (41), together with Eqs. (55, 62) and (63). We, thus, arrive at the fol-
lowing set of linear equations:
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X3

n¼1
An ¼ h1=s ¼ f 1 sð Þ (64)X3

n¼1
Xn � Cn � 1ð ÞAn ¼ 0 (65)X3

n¼1
a3Cn � Xn � a1ð ÞAn ¼ P1=s ¼ f 2 sð Þ (66)

In order to determine the studied fields in the physical domain, a numerical inversion method is
used to obtain the numerical results. The details of these methods can be found in
Durbin (1974).

7. Results and discussion

In this section, the numerical solution is carried out for copper material to illustrate the efficiency
and accuracy of the introduced new model (HFTD) and compare theoretical results. The numer-
ical analysis was performed using the procedure proposed by Durbin (1974), with the help of
MATHEMATICA programing.

We have made discussions to highlight the effects of higher-order fractional time-derivatives
and the four phase-lag parameters sq, sh, sg, sp on all studied physical fields. According to
Zenkour, Mashat, and Abouelregal (2012) and Zenkour, Alzahrani, and Abouelregal (2015), the
following physical parameters are given

CE ¼ 383:1
J

kgKð Þ , T0 ¼ 296 Kð Þ, at ¼ 1:78� 10�5 1
K

� �
, K ¼ 386

W
m K

� �
,

k ¼ 7:76� 1010
N
m2

� �
, l ¼ 3:86� 1010

N
m2

� �
, ac ¼ 1:98� 10�4 m3

kg

 !
, q ¼ 8954

kg
m3

� �
,

t ¼ 0:05s, D ¼ 0:85� 10�8 kg s
m3

� �
, a ¼ 1:2� 104

m2

K s2

� �
, b ¼ 0:9� 106

m5

kg s2

 !
:

The non-dimensional distributions of displacement u, temperature h, and stress rxx, concentration
C and chemical potential P fields have been evaluated versus the x-axis in the range 0 � x � 5:
The results are performed for the values of phase-lags, namely sq ¼ 0:1, sh ¼ 0:05, sg ¼ 0:1 and
sp ¼ 0:05: Other physical parameters are fixed.

7.1. Comparison between different models of thermo-diffusion

In this case, the results of the models of thermo-diffusion with thermal and diffusion relaxation
times (STD), fractional thermo-diffusion (FTD) are compared with the generalized thermo-diffu-
sion model with higher-order fractional time-derivatives and four phase-lags (HFTD).The com-
parison results are displayed in Tables 1–5. From Tables 1–5 it is concluded that:

� The classical and generalized thermoelasticity theories can be deduced from our results by
neglecting the diffusion effect.

� The higher-order fractional time-derivatives model has a great effect on physical fields.
� The system response depends on the values of the higher-order parameters l,m, n and h:
� The values of temperature h, and the thermal stress rxx are highlysensitive to the variation of

the parameters l,m, n and h: However, the concentration C and chemical potential P are less
sensitive to the variation of the higher fractional order parameters.

� The axial displacement u is not affected by the parameters l,m, n and h:

10 A. E. ABOUELREGAL ET AL.



� A significant phenomenon observed in all tables is that the values of the physical fields in the
fractional thermo-diffusion model with four phase-lags (HFTD) is restricted in a specific
region in the medium.

� The distributions according to the HFTD model show the behavior of limited wave propaga-
tion speeds based on the values of the parameters l, m, n and h: This differs from the cases
in the coupled theories of thermo-diffusion (Nowacki 1974a) where an infinite propagation
velocity is inherent.

� It is necessary to take into account the values of the parameters l,m, n and h until the materi-
als attain the steady state.

Table 1. Effect of the higher-order fractional time-derivatives on the temperature h:

x
STD

a ¼ 1Þ
FTD

a ¼ 0:7Þ

HFTD (a ¼ 0:7, sq ¼ 0:02, sh ¼ 0:01, sg ¼ 0:02 and sp ¼ 0:01)

l¼ 1, m¼ 1,
n¼ 1, h¼ 1

l¼ 2, m¼ 1,
n¼ 2, h¼ 1

l¼ 2, m¼ 2,
n¼ 2, h¼ 2

l¼ 3, m¼ 2,
n¼ 2, h¼ 2

l¼ 4, m¼ 2,
n¼ 2, h¼ 2

l¼ 5, m¼ 2,
n¼ 2, h¼ 2

0 1.01666 1.01666 1.01666 1.01666 1.01666 1.01666 1.01666 1.01666
0.5 0.483008 0.688794 0.658576 0.68876 0.660537 0.722581 0.909078 1.05687
1 0.3765 0.344044 0.373842 0.344002 0.347035 0.282308 0.418437 0.558496
1.5 0.182262 0.227506 0.223432 0.227475 0.223573 0.26626 0.348218 0.0540859
2 0.0855901 0.122204 0.136036 0.122084 0.127236 0.12426 0.190086 0.192037
2.5 0.0632791 0.0753746 0.0806497 0.0752961 0.0751199 0.148116 0.00180933 0.180298
3 0.0294155 0.0429942 0.0470162 0.0428702 0.043236 0.000278898 �0.00789305 �0.217278
3.5 0.0203023 0.0234126 0.0267637 0.0232637 0.0238263 0.0666318 �0.19804 �0.112001
4 0.00831289 0.0125057 0.0145021 0.012324 0.0125009 0.0116268 �0.0120029 0.181871
4.5 0.00239196 0.00549067 0.0071086 0.0053511 0.0056805 0.0146613 �0.240486 �0.0843079
5 0.00040123 0.00168658 0.0026894 0.0016439 0.0017416 �0.0150232 0.0806953 �0.200142

Table 2. Effect of the higher-order fractional time-derivatives on the displacement u:

x
STD

(a ¼ 1Þ
FTD

(a ¼ 0:7Þ

HFTD (a ¼ 0:7, sq ¼ 0:02, sh ¼ 0:01, sg ¼ 0:02 and sp ¼ 0:01)

l¼ 1, m¼ 1,
n¼ 1, h¼ 1

l¼ 2, m¼ 1,
n¼ 2, h¼ 1

l¼ 2, m¼ 2,
n¼ 2, h¼ 2

l¼ 3, m¼ 2,
n¼ 2, h¼ 2

l¼ 4, m¼ 2,
n¼ 2, h¼ 2

l¼ 5, m¼ 2,
n¼ 2, h¼ 2

0 �0.160633 �0.165169 �0.166819 �0.165193 �0.165364 �0.164782 �0.164801 �0.166866
0.5 0.0200813 0.0202494 0.0200968 0.0202325 0.0202016 0.0203687 0.0242045 0.0238996
1 0.0104723 0.0113498 0.011647 0.0113392 0.01137 0.0112588 0.00983406 0.0100316
1.5 0.00350411 0.00401061 0.0042001 0.0040036 0.0040248 0.00391712 0.000255396 0.00106932
2 0.00132418 0.00151617 0.0015951 0.0015113 0.0015207 0.0014476 0.00225991 0.00340418
2.5 0.000684816 0.000733992 0.0007603 0.0007322 0.0007347 0.000712549 0.000272587 0.0033958
3 0.000466331 0.000467119 0.0004741 0.0004682 0.0004679 0.000477512 �0.00312306 �0.0018656
3.5 0.000364146 0.00035449 0.0003552 0.0003566 0.0003562 0.000375348 0.00119638 �0.00214871
4 0.000298219 0.000290755 0.00029 0.0002932 0.0002931 0.000295547 0.00292144 0.00284395
4.5 0.000252062 0.000244976 0.0002447 0.0002478 0.0002475 0.000243285 �0.00248102 0.00242904
5 0.0002141 0.000208349 0.0002089 0.0002111 0.0002108 0.000212441 �0.00193829 �0.00257289

Table 3. Effect of the higher-order fractional time-derivatives on the stress component rxx .

x
STD

(a ¼ 1Þ
FTD

(a ¼ 0:7Þ

HFTD (a ¼ 0:7, sq ¼ 0:02, sh ¼ 0:01, sg ¼ 0:02 and sp ¼ 0:01)

l¼ 1, m¼ 1,
n¼ 1, h¼ 1

l¼ 2, m¼ 1,
n¼ 2, h¼ 1

l¼ 2, m¼ 2,
n¼ 2, h¼ 2

l¼ 3, m¼ 2,
n¼ 2, h¼ 2

l¼ 4, m¼ 2,
n¼ 2, h¼ 2

l¼ 5, m¼ 2,
n¼ 2, h¼ 2

0 0 0 0 0 0 0 0 0
0.5 �0.307369 �0.381298 �0.380125 �0.381544 �0.379549 �0.385719 �2.33989 1.05558
1 �0.166167 �0.174535 �0.179167 �0.175348 �0.175207 �0.264581 �2.28734 0.561984
1.5 �0.0720852 �0.0866936 �0.0886646 �0.0882365 �0.0878082 �0.108448 0.958086 �1.20512
2 �0.0480317 �0.0558966 �0.0562707 �0.0561707 �0.0560762 �0.0358243 0.28599 �1.51182
2.5 �0.0377914 �0.0423771 �0.0429629 �0.0308797 �0.0391201 �0.0264149 �2.32049 0.538868
3 �0.0331934 �0.0303726 �0.035643 �0.0283848 �0.0272135 �0.0318254 0.0587533 1.10097
3.5 �0.0311472 �0.0163017 �0.0304041 �0.0246798 �0.0213008 �0.0207413 2.22497 �0.809631
4 �0.0166329 �0.0224078 �0.0260878 �0.0220142 �0.0224216 �0.0187396 �0.464393 �1.02997
4.5 �0.0154422 �0.0169709 �0.0222074 �0.0201956 �0.0226952 �0.0261752 �1.29413 1.01294
5 �0.014438 �0.0158605 �0.0184169 �0.0190885 �0.0170626 �0.0189758 0.538063 0.997451
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Table 4. Effect of the higher-order fractional time-derivatives on the chemical potential P:

x
STD

(a ¼ 1Þ
FTD

(a ¼ 0:7Þ

HFTD (a ¼ 0:7, sq ¼ 0:02, sh ¼ 0:01, sg ¼ 0:02 and sp ¼ 0:01)

l¼ 1, m¼ 1,
n¼ 1, h¼ 1

l¼ 2, m¼ 1,
n¼ 2, h¼ 1

l¼ 2, m¼ 2,
n¼ 2, h¼ 2

l¼ 3, m¼ 2,
n¼ 2, h¼ 2

l¼ 4, m¼ 2,
n¼ 2, h¼ 2

l¼ 5, m¼ 2,
n¼ 2, h¼ 2

0 0.101666 0.101666 0.101666 0.101666 0.101666 0.101666 0.101666 0.101666
0.5 0.261691 0.241966 0.236846 0.245275 0.245678 0.246662 7.70911 �2.77316
1 0.16452 0.186283 0.18291 0.187469 0.186664 0.188407 �1.16762 6.21046
1.5 0.132041 0.11951 0.140077 0.111451 0.106728 0.107034 �1.17243 �4.68767
2 0.0672146 0.0901275 0.104984 0.0885281 0.0901143 0.0897325 1.92714 4.48618
2.5 0.0582288 0.0639212 0.0743505 0.0769196 0.0687885 0.0685514 �2.85792 �4.44156
3 0.0609694 0.0562802 0.0431804 0.0671032 0.0697978 0.0707653 9.80381 4.19641
3.5 0.0195722 0.0467504 0.0181089 0.0086251 0.0276757 0.0280527 �3.7832 �3.49128
4 0.0246777 0.0287724 0.0079564 0.0275027 0.0110876 0.0109457 1.52292 2.99764
4.5 0.031017 �0.00643396 0.0126899 0.0272001 0.0286053 0.0282844 �4.80221 �2.4006
5 0.00431202 0.0176697 0.0273028 0.031248 0.0204251 0.0203549 �8.27058 1.81951

Table 5. Effect of the higher-order fractional time-derivatives on the concentration C:

x
STD

(a ¼ 1Þ
FTD

(a ¼ 0:7Þ

HFTD (a ¼ 0:7, sq ¼ 0:02, sh ¼ 0:01, sg ¼ 0:02 and sp ¼ 0:01)

l¼ 1, m¼ 1,
n¼ 1, h¼ 1

l¼ 2, m¼ 1,
n¼ 2, h¼ 1

l¼ 2, m¼ 2,
n¼ 2, h¼ 2

l¼ 3, m¼ 2,
n¼ 2, h¼ 2

l¼ 4, m¼ 2,
n¼ 2, h¼ 2

l¼ 5, m¼ 2,
n¼ 2, h¼ 2

0 0.214352 0.214352 0.214352 0.214352 0.214352 0.214352 0.214352 0.214352
0.5 0.110095 0.115655 0.114608 0.115938 0.115624 0.116889 2.23604 �1.25184
1 0.0810905 0.0774626 0.0768407 0.0783641 0.0784504 0.0895125 2.12303 �0.738089
1.5 0.0538629 0.0609018 0.0601748 0.0626049 0.0619847 0.0646832 �1.179 1.09486
2 0.0453958 0.0515829 0.0507981 0.0519037 0.0516958 0.0497063 �0.308494 1.68291
2.5 0.0397046 0.0437712 0.0439683 0.0311687 0.0401759 0.0390274 2.24939 �0.40179
3 0.0359709 0.0325883 0.0382076 0.0303958 0.0291096 0.0297093 �0.287375 �1.26473
3.5 0.0340092 0.0176995 0.0331205 0.0268749 0.02316 0.0228619 �2.27096 0.702067
4 0.0182819 0.0245326 0.0285775 0.0240977 0.0245314 0.024012 0.524922 1.20749
4.5 0.016965 0.0186062 0.0243762 0.0221406 0.0248879 0.0254652 1.11217 �0.935062
5 0.0158445 0.0173964 0.0202326 0.0209362 0.0187211 0.0188876 �0.751826 �1.19302

Figure 1. The temperature h for different times instant t and distance x:
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� It is adequate to take l ¼ 3, m ¼ 2, n ¼ 2 and h ¼ 2 to acquire very close and accur-
ate results.

� As a very important observation, in the case of HFTD theory, with increasing the parameters
l,m, n and h, yields accurate results. This corresponds to the results obtained by Abouelregal
(2019a, 2019b, 2020).

Figure 2. The displacement u for different time instant t and distance x:

Figure 3. The stress rxx for different time instant t and distance x:
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� The well-posedness question of the relevant thermoelastic model with time differential phase-
lags has been lectured by D’Apice, Chiriţ�a, and Zampoli (2016) and Zampoli and Landi
(2017). Thus, we can say that the current work promotes the validity of the mathematical
model with higher-order time-derivatives in the context of the fractional thermo-diffu-
sion theory.

Figure 4. The chemical potential P for different time instant t and distance x:

Figure 5. The concentration Cðx, tÞ for different time instant t and distance x:

14 A. E. ABOUELREGAL ET AL.



7.2. The effect of instant time on thermal and diffusion vibration

Figures 1–5 show 3D plots that are displayed to explain comparisons of the variations of
temperature h, displacement u, stress rxx, chemical potential P and concentration C versus
instant time parameter t, (0:05 � t � 0:1) and the distance x, (0 � x � 5). The distributions are
obtained in the frame of the fractional thermo-diffusion theory with higher-order fractional
time-derivatives and four phase-lags (HFTD). Numerical results and graphs are obtained when
l ¼ 2,m ¼ 2, n ¼ 2, h ¼ 2 and a ¼ 0:7: From the figures, we observed that:

� The instant time t has a significant effect on all the physical studied fields.
� The displacement u and chemical potential P are directly decreasing as the time t increases.
� The chemical potential P is very sensitive to the variation of the distance x andthe instant

time t:
� The temperature h and stress rxx as well as concentration C are no longer increasing with the

variationof time and have the same values at the same distance.

8. Conclusions

In this paper, we have proposed generalizations of the Fourier law in the theory of heat conduction
and of the Fick equation in the diffusion theory. We formulated the theory of thermo-diffusion in
deformable bodies, based on the equation of heat conduction and the equation of diffusion with
higher-order fractional time-derivatives and four phase-lags of the heat flux vector, temperature
gradient, diffusing mass vector and for the chemical potential gradient. Several particular cases of
interest have been deduced from the current investigation. Validation results indicate that:

� The new thermo-diffusion model of higher-order fractional time-derivatives and four phase-
lags not only matches the experimental data well but can also be a good alternative to the pre-
viously used models.

� According to the higher-order thermo-diffusion, we have to construct a new class of materials
according to the choice of the values of the parameters l,m, n and h: Therefore, these parame-
ters become a new indicator of their ability to conduct heat in conducting materials.

� Some results have been reported to show the difference between classical and modified models
of thermo-diffusion theory.

� Moreover, it should be noted that our choices of the expansion orders parameters l, m, n
and h not only correspond to what has been demonstrated in Chiriţ�a, Ciarletta, and Tibullo
(2017) but are also able to comprise different thermo-diffusion modes.

� Finally, the results of this work may prove to be useful in the various internal heat-generation
problems like nuclear boiling, phonon-electron interactions, exothermic catalytic reactions and
phonon scattering that had different applications in geophysical and industrial.

Nomenclature

k, l Lam�e’s constants
at thermal expansion coefficient
ac coefficient of linear diffusion
b1 ¼ 3kþ 2lð Þat thermal coupling parameter
T0 environmental temperature
h ¼ T � T0 temperature increment
T absolute temperature
Ce specific heat
e ¼ divu cubical dilatation
rij stress tensor
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eij strain tensor
u displacement vector
q heat flux vector
g flow of diffusing mass vector
l,m, n, h higher order fractional time derivatives
Fi components of the body force vector
K thermal conductivity
q material density
Q heat source
b2 ¼ 3kþ 2lð Þac diffusion coupling parameter
dij Kronecker0s delta function
r2 Laplacian operator
sq phase lag of heat flux
sh phase lag of temperature gradient
sg phase lag of diffusing mass
sp phase lag of chemical potential gradient
a fractional order
D diffusion coefficient
P chemical potential
C concentration of diffusion material
a thermoelastic diffusion effect
b measure of diffusive effect
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